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Abstract. We present an approach for dealing with the contribution following from the measure
which occurs when going over from the Cartesian to the radial representation in the slave-boson
functional integral. The connection with previous calculations is established and we treat as an
example theU = ∞ one-band Hubbard model in the large-spin-degeneracy limit. The results
that we obtain are in total agreement with those of a recentX-operator approach.

The slave-boson (SB) functional integral (FI) approach [1–6] has been repeatedly used
for the investigation of models for strongly correlated systems, especially in connection
with large-spin-degeneracy (N ) treatments. However, some intrinsic fine details which
have formerly not been addressed in a proper way have to be taken into account when this
approach is used. These are, for example, the change of variables in the FI representation and
the correct use of the time discretization in the FI. The latter problem has been investigated
in detail by Arrigoni et al [7]. These authors find that a correct treatment of the time-
discretized formulation of the FI gives additional terms to the free energy as calculated in
the commonly applied time-continuum limit, provided that fluctuation (1/N -) corrections
beyond the saddle-point solution are considered.

Here we apply the commonly used time-continuum limit. This can be justified by the
fact that these differences should not occur when such physical quantities as correlation
functions are calculated. The latter has been shown in a strict sense [8] for the leading
order of the density correlation function by comparing the SB result with that of a totally
independent 1/N -expansion [8, 9] based on Hubbard’sX-operator formulation [10] and a
Baym–Kadanoff perturbation expansion [11, 12]. Here we want to address the change of
variables in the slave-boson FI when the radial representation of the fields is used. Due
to this change some additional terms appear in the measure which are not considered in
the usual treatments [13]. We deal with them in a proper way and discuss the results as
compared with the common approach.

As an example we consider the one-band Hubbard model [14, 15] in the limit of infinite
Coulomb repulsion and large spin degeneracy. This limit allows for a controlled expansion
in the (artificial) small parameter 1/N . To make the comparison with the usual approach
comprehensible and self-contained we have to review some well known steps of the usual
SB treatment in a detailed way.

In this work we investigate electrons on a lattice, subject to an infinitely strong local
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interaction. Allowing for an arbitrary spin degeneracyN , the Hamiltonian is given by

H =
∑
ip

Eipd
†
ipdip +

∑
i,j,p

tij

N
d

†
ipbib

†
j djp. (1)

Above,bi denotes the annihilation operator of a boson anddip that of a fermion with spin
p at sitei [1, 2]. The spin indices run from 1 toN . The first term in equation (1) describes
isolated atoms, the second one the hopping between atoms with matrix elementstij . The
scaling factorN has been introduced so that the limitN → ∞ is non-trivial. ForN = 2,
the Hamiltonian (1) reduces to the original Hubbard model. The bosonic and fermionic
operators act within a restricted Hilbert space defined by the constraint

Qi = b
†
i bi +

N∑
p=1

d
†
ipdip = N

2
. (2)

Equation (2) implies that, at most,N/2 of the N states at each site can be occupied at
the same time. Note that this constraint allows for an 1/N -expansion around the saddle
point of the functional integral in which the saddle-point solution itself becomes exact for
N → ∞ at all temperatures. This would not be the case if the constraint was not enlarged,
i.e., if N/2 on the r.h.s. of equation (2) was replaced by unity [16]. Now we consider the
partition functionZ for the Hamiltonian (1). FormulatingZ as a functional integral over
anticommuting Grassmann (d∗, d) and commuting Bose (b∗, b) fields one obtains [19]

Z =
∫

D[d∗, d] D[b∗, b] D[λ] exp

(
−

∫ β

0
dτ L(τ)

)
(3)

with

L(τ) =
∑

i

[
b∗

i

(
∂

∂τ
+ iλi

)
bi − iλiq0N +

∑
p

d∗
ip

(
∂

∂τ
+ iλi − µ

)
dip

]

+
∑
i,j,p

tij

N
d∗

ipbib
∗
j djp (4)

in which τ is the imaginary-time index andq0 = 1/2. The integration overλ ensures the
fulfilment of the constraint. Expressing the bosonic fields in terms of modulus and phase

bi(τ ) = ri(τ ) exp(iθi(τ )) (5)

one can see that the phase of the bosonic field in equation (4) can be eliminated. This is
done via the following local transformation [4]:

dip → d ′
ip = exp(−iθi)dip

and

λi → λ′
i (τ ) = λi + θ̇i (τ ).

Expressing (4) in terms of the new variables and leaving out the primes one gets

L(τ) =
∑

i

{
ri

(
∂

∂τ
+ iλi

)
ri − iλiq0N + q0Niθ̇i(τ ) +

∑
p

d∗
ip

(
∂

∂τ
+ iλi − µ

)
dip

}

+
∑
i,j,p

tij

N
d∗

iprirj djp. (6)

Now θ decouples and can be integrated out. Note that when using the radial representation
Elitzur’s theorem [20] is not violated in the saddle-point approximation, which is in contrast
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to what is the case for the Cartesian representation. The change from the Cartesian to the
radial representation is connected with a change in the measure:

D[b(τ)] D[b∗(τ )] =
(∏

τ

r(τ )

)
D[r(τ )] D[θ(τ )].

Usually the product term∏
τ

r(τ )

is neglected in the SB treatments. Let us first continue with this way of reviewing the
steps within the usual approach, before dealing with this point in detail. Integrating out the
fermionic degrees of freedom one arrives at

Z =
∫

D[r] D[λ] exp

{
−

∫ β

0
dτ L(τ)

}
(7)

in which

L(τ) =
∑

i

[
ri(iλi)ri − iλiq0N

] − N

β
tr

[
ln

{(
∂

∂τ
+ iλi − µ

)
δij + tij

N
rirj

}]
. (8)

The trace (tr) runs only over the time and site variables; the summation over the spin degrees
of freedom has already been taken into consideration in the prefactorN .

Let us now turn to the saddle-point equations. The actionS in equation (7) has a
static homogeneous saddle pointS0 at ri(τ ) = √

Nr0 and iλi(τ ) = λ0, determined by the
saddle-point equations

δS/δr|λ0,r0
= 0 δS/δλ|r0,λ0

= 0.

Introducing the effective dispersion relation (the atomic energies are set to zero here):

ε(k) = λ0 + t (k)

N
r0

2N (9)

the saddle-point equations are solved via

r0λ0 = −r0
1

NS

∑
k

t (k)f (ε(k)) (10)

and

r2
0 − q0 = − 1

NS

∑
k

f (ε(k)) = −np (11)

in which NS denotes the number of sites andnp the density per spin degree of freedom.
The free energy is given by

F = −kBT

[
−βNS(λ0 − µ)N(r0

2 − q0) + N
∑

k

ln
(
1 + e−β(ε(k)−µ)

)]
. (12)

So far we have dealt with the results for the usual treatment. We have calculated the same
quantities as in equations (9)–(11) with an alternative method [8, 9], using Hubbard’sX-
operator formulation [10] and the Baym–Kadanoff perturbation expansion [11, 12]. The
detailed calculation will be given in a longer publication [21]. In leading order of the
1/N -expansion we get the same results as with the SB method except for equation (10). In
addition to theX-operator solution

λ0 = − N

NS

∑
k

t (k)

N
f (ε(k))
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the equations (10)–(11) allow for having the solutionr0 = 0 occurring as an independent
one. For the latter, equation (10) does not determine an explicit expression forλ0. However,
equation (11) implies that forr0 = 0 it follows thatλ0 = µ (atomic energies set to zero).
This means that in the grand canonical ensemble for ther0 = 0 solution, λ0 should be
adjusted for any givenµ in such a way that the system is half-filled and the density becomes
independent of the chemical potential! In this context this solution appears spurious, and,
as such, is discarded. It nevertheless exists and seems to lead to a difference between the
results of the SB andX-operator approaches. However, we will show that this difference
is an artifact resulting from the unsatisfactory treatment of the measure leading to the
independent solutionr0 = 0. We present an approach in which this product term is entirely
taken into account. Within this approach no additional solutionr0 = 0 occurs and we get
total agreement with theX-operator results. Let us first continue with describing the usual
approach.

We now consider Gaussian fluctuations around the saddle point of the FI. Derivation
of the known expressions is necessary to make the changes visible when the measure is
treated in a proper way. To deal with the Gaussian fluctuations one expands the tr ln term
in the action (8) of the FI as

tr(ln G−1) = tr ln
(
G−1

0 (1 − G06)
) = tr(ln G−1

0 ) − tr(G06) − 1

2
tr(G06G06) − . . . (13)

up to the third term. The first term is known from the saddle-point solution. ForG0 the
fields have to be replaced by their saddle-point values. The fluctuation fieldsδr ′, δλ′ are
defined as follows:

ri = r0

√
N(1 + δr ′

i ) (14)

iλi = λ0 + i δλ′
i . (15)

Thus one gets for6

6ij = − t

N
Nr2

0(δr ′
i + δr ′

j + δr ′
i δr ′

j ) − i δλ′
i δij . (16)

The following rescaling of the fields by
√

N

δr ′ = δr/
√

N δλ′ = δλ/
√

N

ensures that for the calculation of the O(1) contributions to the free energyF it is sufficient
to retain those terms that are quadratic in the fluctuation fields in equation (13). Thus the
quadratic termδr ′ δr ′ in equation (16) can occur only linearly in equation (13). One gets

Z = exp(−βS0)

∫
D[δr] D[δλ] exp(−δS). (17)

The action now reads

δS = 1

βNS

∑
ωn,q

(δr(−q, −ωn) δλ(−q, −ωn)) L̂(q, ωn)

(
δr(q, ωn)

δλ(q, ωn)

)
(18)

with the matrix

L̂(q, ωn) =
(

Lrr Lrλ

Lλr Lλλ

)
(q,ωn)

(19)

having the matrix elements

Lλλ(q, ωn) = − 1

2 NS

∑
k

[f (ε(k + q)) − f (ε(k))]
1

ε(k + q) − ε(k) − iωn

(20)
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Lλr(q, ωn) = Lrλ(q, ωn)

= −ir2
0 − i

r2
0

2NS

∑
k

[f (ε(k + q)) − f (ε(k))]
t (k + q) + t (k)

ε(k + q) − ε(k) − iωn

(21)

Lrr(q, ωn) = r4
0

2 NS

∑
k

[f (ε(k + q)) − f (ε(k))]
[t (k + q) + t (k)]2

ε(k + q) − ε(k) − iωn

+ r2
0

NS

∑
k

f (ε(k))t (k + q) + r2
0λ0. (22)

To calculate the FI one has to integrate out theλ-fields first [19], leading to

Z = e−βS0

∫
D[δr∗, δr] e−δS (23)

with

−δS = − 1

βNS

∑
(q,ωn)>0

δr∗(q, ωn)

[
L̄rr − L̄2

rλ

L̄λλ

]
(q,ωn)

δr(q, ωn). (24)

Above, we have used the abbreviation

Lαβ(q, ωn) + Lαβ(−q, −ωn) = L̄αβ(q, ωn)

for (q, ωn) 6= (0, 0) andα, β = r, λ.
Let us now investigate the role played by the product term in the measure. We give

here a novel treatment of the product term

(∏
τ r(τ )

)
which appears in the measure of the

FI when going over from the Cartesian to the radial representation (equation (5)):

D[b(τ)] D[b∗(τ )] =
(∏

τ

r(τ )

)
D[r(τ )] D[θ(τ )]. (25)

The term
∏

τ r(τ ) is usually neglected. Because the consideration of this term in the form
of equation (25) is quite difficult, we go over to a formulation in which

∏
τ r(τ ) vanishes.

Following Popov [22] we define

r =
√

R (26)

in which the variables have to be understood as fields. Now one hasr dr = 1
2 dR and the

factorr in the measure has gone. In this way we avoid having to deal with terms O(1) in the
Lagrangian in contrast to the physical ones which are O(ε), ε being the time discretization.
However, one has to pay for this advantage. Now, the expansion around the saddle-point
solution

r = r0

√
N(1 + δr ′)

(see equation (14)) yields an additional term. One has

r =
√

R =
√

R0

√
N

√
1 + δR′

with
√

R0 = r0. Taylor expansion of
√

1 + δR′ and the rescalingδR′/2 → δR′ leads to

r =
√

R =
√

R0

√
N

(
1 + δR′ − (δR′)2

2
+ . . .

)
. (27)

We now perform the rescalingδR′ = δR/
√

N . For largeN , the expansion in equation
(27) can be truncated after the third summand. Now, the saddle point is determined by the
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variational differentiation of the actionδS/δR|λ0,R0
instead ofδS/δr|λ0,r0

in the common
approach. As a result, we do not get the additional independent saddle-point solutionr0 = 0.
This is in contrast to the usual treatment (compare equation (10)) and in agreement with
the results of a recentX-operator approach [8].

In the following we redetermine the propagator matrix equation (19) by employing the
expansion (27). Equation (27) has a form analogous to that of the expression forr, equation
(14). One simply has to replaceδr ′ by δR′ and add the quadratic term. The latter can give
contributions (in leading order of 1/N [23]) only within the term which is quadratic in
δR, and as a result the last two contributions toLrr , equation (22), are modified. The one
stemming fromri(iλi)ri disappears since this term turns into 2iR0 δλi δRi and gives the
first contribution toLrλ as before. Due to this there follows a loss of the termr2

0λ0 in Lrr ,
equation (22). For the second summand

−N

β
tr

[
ln

{(
∂

∂τ
+ iλi − µ

)
δij + tij

N
rirj

}]
of the action given by equation (8), there is a local contribution following from the quadratic
term in equation (27) leading to

rirj →
(

1 + δR′
i − (δR′

i )
2

2

)(
1 + δR′

j − (δR′
j )

2

2

)
.

Thus in the expression for6ij , equation (16),δr ′
i + δr ′

j + δr ′
i δr ′

j turns into

δR′
i + δR′

j + δR′
i δR

′
j − (δR′

i )
2

2
− (δR′

j )
2

2
.

The other terms are of higher order in 1/N [23]. Note that the new expressions in6 can
contribute only to such terms stemming from the expansion of the logarithm in equation
(13), which are linear in6. These linear terms give the first term of the second summand
in Lrr , equation (22),

− 1

NS

∑
k

f (ε(k))t (k + q).

The additional terms ((δR′)2/2) in equation (27) lead to a replacementt (k + q) →
t (k + q) − t (k) in equation (22). Altogether,Lrr is now given by

Lrr(q, ωn) = r4
0

2 NS

∑
k

[f (ε(k + q)) − f (ε(k))]
[t (k + q) + t (k)]2

ε(k + q) − ε(k) − iωn

+ r2
0

NS

∑
k

f (ε(k))[t (k + q) − t (k)]. (28)

However, on employing the saddle-point equation (10) it turns out that the two expressions
for Lrr , equation (22) and equation (28), are numerically identical. Other changes do
not occur. Thus the expression for the FI including Gaussian fluctuations is obtained by
replacing in the expressions (17) and (18) allδr by δR andr2

0λ0 by

− r2
0

NS

∑
k

t (k)f (ε(k))

in Lrr , equation (22). If just the FI representation of the partition function is considered,
the integration variable can be chosen arbitrarily. Consequently we can replace the new
variablesR formally by the usualr but have to take into account that the independent
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solution r0 = 0 no longer occurs. Thus one gets formally the correct solutions if the
product term is simply neglected as well as the saddle-point solutionr0 = 0. This applies
to the calculation of correlation functions as well. We consider the hole–hole correlation
function:

H(i − j, τ ) = 〈b+
i (τ )bi(τ )b+

j (0)bj (0)〉. (29)

Using the expansion (15) and leaving out the static contributions and the product term in
the measure, this turns into

H(i − j, τ ) = 4r4
0N〈δri(τ ) δrj (0)〉 + O(1). (30)

Now carrying through the same expansion but taking the measure into account leads to the
first term in equation (30), without the O(1) corrections, which would follow from higher-
order terms in the action. Thus the two sets of results coincide to leading order in 1/N .
Even when calculating the Green’s function the two procedures lead to the same result,
even though some care has to be taken to deal with the time discretization [7]. However,
choosing one procedure or the other will make a difference when performing self-consistent
one-loop calculations.

In this letter we have clarified the circumstances under which the product term in the
measure, which occurs when going over from the Cartesian to the radial representation
in the slave-boson functional integral, can be neglected. To this end we considered the
U = ∞ one-band Hubbard model in the limit of large spin degeneracy. We derived both
expressions for the propagators and found that they differ at the self-consistent one-loop
level only. In contrast to what is the case in the usual approach, in which the product term is
neglected, we do not get an additional unphysical saddle-point solution becoming important
if, for example, next-nearest-neighbour hopping is included [8]. The results that we get for
N → ∞ are in total agreement with recent results from an alternativeX-operator approach
[8, 9].
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